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Letter to the Editors

Comments on “A fractal geometry model for evaluating permeabilities of porous preforms used in liquid

composite molding”

In the recently published paper by Pitchumani and
Ramakrishnan [1], the authors presented a fractal ge-
ometry model for evaluating permeabilities of porous
preforms used in liquid composite molding. However,
the model is highly questionable. Some comments are as
the follows:

1. Egs. (6)—(10) in the paper [1] lack the sound
mathematical base.

According to Egs. (2)—(5) in the paper [1], the defi-
nition of Q (page 2219): “total flow rate through the
preform”, and the further detailed definition of Q as
(page 2223) “Further, the total volumetric flowrate, Q,
through the representative preform volume is obtained
by integrating the flowrate contribution by the pores in
every d/ interval, over the entire range of prevalent pore
SizeS, Amin 1O Amax in the preform.” The corresponding
equations should be
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Egs. (C1)—(C3) are the mathematically integrated results
(see Appendix A for the detail). But this does not imply
that Egs. (C1)-(C3) are the correct fractal model for
permeabilities. Egs. (6)—(8) in the paper [1] can be ob-
tained only by adding additional terms g, (AP/u)2}. B,
2,70 B! and g, f” into the right side of Egs. (C1)~(C3),

respectively, and this means Q + g,(AP/u)2. " = O,

k+ gl p" =kand v, + g, = v, From the defini-
tion of Q, Egs. (C1)-(C3) should be the final results,
therefore, there should be O + gq(AP/y)/l3 B £ 0, s0

as to k+g, 5 P #k and v, + g.p* # v,, and thus
Eqgs. (6)—(8) are mathematically incorrect.

2. When the pore area fractal dimension dy = 2,
p = 0 from Eq. (9) and the model predicted permeability
k=0 from Eq. (7), and Fig. 7 illustrates the results of
the model. The paper [1] also states (page 2228) that
“An interesting fact elucidated in Fig. 7(a) is that for any
tortuosity dimension, as the area dimension, dy, ap-
proaches its largest possible value of 2, the permeability
approaches zero.” However, when dy =2, f =0 from
Eq. (9) and v, =0 (or vy = 1) from Eq. (8), this will
result in o = 1 from Eq. (10). « = 1 corresponds to the
physical situation of the preform consisting of pores
with the size of Apin = Amax, and this will lead to the non-
zero flowrate (Q#0) and non-zero permeability
(k # 0). Therefore, Egs. (7)-(10) are contradictory each
other.

As a result, the model proposed by Pitchumani and
Ramakrishnan [1] is an erroneous one.

Eq. (3) (page 2222) in the paper [1] defines that
“where dy , the pore area dimension, is the fractal di-
mension of the intersecting pore cross-sections with a
plane normal to the flow direction. Since dy defines a
fractal surface in a two-dimensional plane, its value lies
in the range 1 < dy < 2.” The paper [1] also states (page
2228) that “An interesting fact elucidated in Fig. 7(a) is
that for any tortuosity dimension, as the area dimension,
dy, approaches its largest possible value of 2, the per-
meability approaches zero.” Egs. (6)—(8) DO yield the
zero flow rate (Q =0), zero permeability (kK =0) and
zero pore volume fraction (v, = 0) as dy =2 (because
dy =2, =0 from Eq. (9), 0 =0 from Eq. (6), k=0
from Eq. (7) and v, = 0 from Eq. (8)).

Actually, according to the definition on the “box
counting method” (for evaluating the pore area dimen-
sion dy given by the authors [1], page 2225), “N(L) now
pertains to the number of boxes required to completely
cover the pore areas.” This will lead to dy = 2 when a
representative cross-section completely consists of pores
or is only one pore, which means that the pore volume
fraction v, of this cross-section is 1. A cross-section with
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v, =1 will have the largest permeability for flow
through this cross-section. Obviously, Egs. (6)—(8) can
be proved to be incorrect by themselves.

I here would like to give the following examples/ref-
erences to further provide evidences.

Example 1: Skjeltorp [2], after using the ‘“box
counting method” for his experimental results, pointed
out that (page 319) “It is also of interest to find D for
different packing fractions (or coverage) defined as
n = packed area/total area. .. As expected, D approaches
2 as n increases toward 1 (compact structure with no
holes).” In this paper [2], D is (page 320): “The fractal
dimension of the packed regions.” Compared with the
paper [2], the pore in the paper [1] is corresponding to
the packed in the paper [2]. Thus, the pore area fractal
dimension dy in the paper [1] will approach 2 as the pore
volume fraction v,(= pore area/total area) increases to-
ward 1 (porous structure with no impermeable sub-
stance), and this (v, = 1) should result in the maximum
permeability. This conclusion is exactly opposite to the
model presented by Pitchumani and Ramakrishnan [1].

Example 2: Let us examine an another example, a
generator of Sierpinski Carpet as shown in Fig. 1 (of the
present paper), the pore area fractal dimension is
dy = 1.8928 [3] and the pore volume fraction is v, = 8/9.
If removing the central impermeable (black) substance
from Fig. 1 (of the present paper), we have a square pore
with the pore fractal dimension dy =2 and the pore
volume fraction v, = 1 as shown in Fig. 2 (of the present
paper). It can be clearly seen that the permeability value
of Fig. 2 (of the present paper) with v, = 1 and dy = 2 is
higher than that of Fig. 1 (of the present paper) with
v, = 8/9 and dy = 1.8928. In fact, the cross-section, as
shown in Fig. 2 (of the present paper) with v, =1 and
with dy = 2, has the largest permeability compared with
other Sierpinski Carpets with v, < 1 and dy < 2 in two-
dimensions.

impermeable substance

Fig. 1. A generator of Sierpinski Carpet with the pore fractal
dimension D, = 1.8928 and v, = 8/9 and it has the lower per-
meability value than that of Fig. 2.

Fig. 2. A square pore with the pore fractal dimension D, =2
and v, = 1 and it has the higher permeability value than that of
Fig. 1.

In addition to these two examples, some similar results
and evidences can be found in many literatures [3-8].
Appendix A

From Egs. (4) and (5) in the paper [1], the expression
for Q is derived as (page 2223)
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According to the definition of ff = Ayax/Lo given in the
paper [1], the expression evolves to
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With the definition of o = Apin/Amax given in the paper
(1],
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Eq. (A1) can be rewritten as
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Substituting 4o = L3 (page 2223) and B = Amax/Lo yields
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Using Darcy’s law, the permeability equation is derived
as
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The expression of porosity, Eq. (C3), can be obtained by
the similar procedures. It can be seen that Egs. (Cl)-
(C3) are the mathematically integrated results.
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